コロナ禍で先行きが見通せなかった中学受験も、ここにきてようやく本格モードに入ってきました。そこで、早くも2021年中学入試を徹底予測!例題もご紹介していますので、「もしかしたらこんな問題が出るかもしれない」と思ってチャレンジしてみてくださいね。
CONTENTS:
- 中止となった各進学塾の入試分析会
- 年号にちなんだ問題~「2021」を考えてみよう
- 新型コロナウイルスに関する計算問題
- 今年ならではの時事ワードを把握しよう
- やってみよう!「三密問題」にチャレンジ!!
- まとめ~ウィズコロナと受験勉強
1.中止となった各進学塾の入試分析会
例年中学入試が終わると、3月、4月に各進学塾でその年の中学入試を振り返る「分析会」が行われます。当ブログでも、分析会については昨年詳しくご紹介させていただきました。各塾が入試結果から分析したことを発表する、言わば塾のアピール場にもなっています。どこも良く分析されていますので、受験の参考にもなることから参加をおすすめしています。
↓↓
※『行くと得する、聞かないと損する!?「中学入試分析会」とは?』
しかし今年は新型コロナウイルスの影響で、人が多く集まる集会等を自粛せざるを得ない状況でしたので、ことごとく中止となってしまいました。
そこで当セミナーでは、もし分析会が開催されていたら次年度受験に向けて発表されそうな事柄を考えてみましたので、ご紹介いたします。来春中学受験をされる方は、是非ご参考までお読みください。
2.年号にちなんだ問題~「2021」を考えてみよう
当セミナーのブログやFacebookでも何度も取り上げましたが、毎年中学入試の算数ではその年の年号の数字にちなんだ計算問題が出題されることが多くあります。
まだ半年先の話ですが、来年は2021年ということで「2021」という数字に着目しましょう。
パッと見ただけでは、何で割り切れるのかわからないですよね。ひょっとしたら素数かとも思います。それもそのはず2021=43×47で2021の約数は「1、43、47、2021」です。なかなかすぐには思いつかないですよね。
つまり、来年の算数の計算の中で「43」や「47」という数字が出てきたら「2021」に関連しているのかもしれないと気にしてみるのもいいでしょう。見慣れない数字が出てきたら案外「43」や「47」の倍数かもしれませんので、「43」や「47」で割ってみるのも一つの手段です。
また「43」と「47」という数字は足すと43+47=90となります。「90」といえば図形で考えると直角の角度の数字です。算数の出題者からすると、普通の計算問題のみならず、いろいろなバリエーションで2021をからめた問題が作成できそうです。
※年号に関する問題として、以前、当Facebookでも四字熟語の問題をご紹介しています。
ご参考までに是非チャレンジしてみてくださいね。
↓↓
3.新型コロナウイルスに関する計算問題
年号以外にも時事問題や今年度ならではのワードを用いた出題も考えられます。今年は何と言っても新型コロナウイルス関連の言葉が気になるところです。そこで、どんな問題が出題されるか考えてみました。
◆「クラスター」
例えば「クラスター」。毎日のようにニュースで本日の感染者の推移を表すグラフが発表されていました。クラスターが発生して一気に人数が増えたということもありました。そのグラフを見て正しい読取りができるかというのも問題にできるでしょう。
算数でしたら、そのグラフから平均を求める等の問題も考えられます。社会のテストでしたら、例えばグラフといろいろな日にちにおける出来事などを並べて「潜伏期間」が1週間とした時に、いつコロナに感染したと考えられるかとか、またその出来事でその時どうしたらよかったのかなど考えさせる問題もできるでしょう。
◆「分散登校」
多くの児童が経験した今年ならではの「分散登校」。出席番号により登校日や登校時間が異なり、最終的には全員が同じ時間の授業が受けられるようにするための計算などは問題として作成できそうです。
◆「三密」「ソーシャルディスタンス」
自粛が解除された後でも「三密」を避けるために「ソーシャルディスタンス」と言われ、飲食店の席でもレジで並ぶ時でも一定の間隔を空けるようになりました。
そのようなことからある人数が入れる広さを求めたり、逆にその広さから入れる人数を求めたりという問題も作れそうです。またレジで並ぶ人数や列の長さを求める植木算のような問題や、列に人が増えつつレジで人をすべて消化するまでの時間を求めるニュートン算のような問題も作れそうですね。
◆「コロナ」
今年のトピックスとしてどうしても意識してしまうのが「コロナ」です。新型コロナウイルスの影響で多くの被害があった事柄ですので、「コロナ」をネタに出題するのも賛否があるでしょう。
しかし、例えばコロナを数字の語呂合わせで「567」とした場合、567を素因数分解すると3×3×3×3×7となります。念のため、この数字についても少し頭の片隅に置いておくといいでしょう。
4.今年ならではの時事ワードを把握しよう
今回の新型コロナウイルス関連の報道では、今まで聞いたことのない言葉が数多く出てきました。先述の「3」でも今年の入試問題で出題される可能性があると述べましたが、算数に限らず国語や社会、理科など他の教科でも問われる可能性もありますから、改めてどのような言葉なのか簡単な意味くらいは把握しておきましょう。
- 「分散登校」
- 「クラスター」
- 「ソーシャルディスタンス」
- 「潜伏期間」
- 「三密」
- 「パンデミック」
- 「東京アラート」
- 「コロナ禍」
- 「オーバーシュート」
- 「非常事態宣言」
- 「医療崩壊」
- 「ロックダウン」
- 「ステイホーム」
- 「テレワーク」
今年はコロナに始まり、コロナ一色と言ってもいいような年となっています。コロナに関するワードは数え上げたらきりがないくらいです。ただ、コロナについては入試で直接問題文のネタにするのはやや不謹慎とも思われます。実際、このような直接的な問題は出題されないかもしれませんが、コロナという言葉を使うか使わないかは別として、それぞれの言葉について自分なりに理解し、説明できるようにしておいても損はないでしょう。
5.やってみよう!「三密問題」にチャレンジ!!
それでは実際に「三密」をテーマにした算数の問題にチャレンジしてみましょう。どこかで同様の問題が出題されるかもしれませんよ。
【例題①】
縦横10m四方の教室があります。現在コロナウイルスの影響で「ソーシャルディスタンス」として、生徒どうしは1席ずつ前後左右ともに2m以上離れなくてはいけません。また、前方は講師の指導スペースとして1メートルは空け、左右と後ろは壁から50cm以上離れなくてはいけません。この教室には最高で何人の生徒が入ることができますか。
ただし、机・椅子・生徒の大きさは考えないものとします。
続けて、応用問題です。
【応用問題】
例題①の生徒間の距離を1.5m以上にした場合、この教室には最大で何人の生徒が入ることができますか。
↓
↓
↓
↓
↓
【解答と解説】
▶例題①
まず、左右について考えます。
(この時、余白等に上のような簡単な図を描くとわかりやすいですよ!)
左右には壁がありますので、一番に右の生徒から一番左の生徒までは
10-(0.5×2)=9 m 離れています。
生徒一人ずつの間隔が2mですので
9÷2=4.5 …間隔の数
となり、間隔が5なら入りきらないので、一番右から一番左までの間隔が4
ということは、人数は植木算を使って
4+1=5 人 …横並びの人数(①)
次に前後について考えます
前方には1メートルの指導スペースがあるため
10-1=9 m スペースがあります。
ただし後方は壁から50㎝離れないといけないので、着席できるのは
9-0.5=8.5 m です。
前後も生徒一人ずつの間隔は2mですので
8.5÷2=4.25
となり、間隔が5なら入りきらないので間隔は「4」になります。
一番前から一番後ろまでの間隔が4ということは、人数は植木算で
4+1=5 …前後の人数(②)
- ②より
5×5=25 人
答え 25人
▶応用問題
左右について考えます。
左右には壁がありますので、一番に右の生徒から一番左の生徒までは
10-(0.5×2)=9 m 離れています。
生徒一人ずつの間隔が1.5mですので
9÷1.5=6 …間隔の数
一番右から一番左までの間隔が6ということは、人数は植木算で
6+1=7 人 …横並びの人数(①)
次に前後について考えます
前方には1メートルの指導スペースがあるため
10-1=9 m スペースがあります。
ただし後方は壁から50㎝離れないといけないので、着席できるのは
9-0.5=8.5 m です。
前後も生徒一人ずつの間隔は1.5mですので
8.5÷1.5=5.66・・・
となり、間隔が6なら入りきらないので間隔は「5」になります。
一番前から一番後ろまでの間隔が5ということは、人数は植木算で
5+1=6 …前後の人数(②)
②より
7×6=42 人
答え 42人
6.まとめ~ウィズコロナと受験勉強
今回は各塾の入試分析会が中止されてしまい、当セミナーで独自に2021年入試を予測して問題等をご紹介しました。
例題も作成しましたが、いかがでしたでしょうか。解けましたか?
志望校の難易度にもよりますが、最難関中学を目指している受験生は応用問題もスラスラ解いていただきたいところです。しかし、できなかった人も焦ることはありません。今から一つ一つ着実に苦手分野つぶしていけばまだ十分間に合います。
できた人も油断することなく、引き続きさまざまな問題にチャレンジしてください。どの教科でも日頃の勉強量が成功へと導くカギとなります。
学校も通常登校になり授業も通常に戻っても、残念ながら新型コロナウイルスは完全に終息したわけではありません。いつまたどうなるかは誰にもわかりません。今後は「ウィズコロナ」を意識して、いつどうなっても慌てないようしっかり計画立てて学習していきましょう。
不安な方は受験のプロにご相談ください。中学受験を知り尽くしたプロが志望校合格に向け、一人ひとりに合った指導法により全力でサポートさせていただきます。